Project \# 1

1. Prove that the metric space $(C([0,1]), d)$ is complete, where the metric d is defined as

$$
d(f, g)=\sup _{x \in[0,1]}|f(x)-g(x)| .
$$

2. Prove that the metric space $(C([0,1]), d)$ is not complete, where the metric d is defined as

$$
d(f, g)=\int_{0}^{1}|f(x)-g(x)| \mathrm{d} x
$$

Hint: Consider the follownig sequence $\left\{f_{n} \in C([0,1]): n \in \mathbb{N}_{\geq 1}\right\}$

$$
f_{n}(x)= \begin{cases}0 & x \in\left[0, \frac{1}{3}\right] \\ \text { linear } & x \in\left[\frac{1}{3}, \frac{1}{3}+\frac{2}{3} \cdot \frac{1}{2^{n}}\right] \\ 1 & x \in\left[\frac{1}{3}+\frac{2}{3} \cdot \frac{1}{2^{n}}, 1\right]\end{cases}
$$

Solution:

1.

Proof. For any Cauchy sequence $\left\{f_{n}: n \in \mathbb{N}_{\geq 1}\right\}$, we will show that it converges to certain $f \in C[0,1]$.

Assume that $\left\{f_{n}: n \in \mathbb{N}_{\geq 1}\right\}$ is Cauchy, then for any $x \in[0,1]$, according to the definition of metric d on $C[0,1]$, we know that $\left\{f_{n}(x): n \in \mathbb{N}_{\geq 1}\right\}$ is a Cauchy sequence in \mathbb{C}. As \mathbb{C} is complete, it must converge in \mathbb{C}. Define a function $f:[0,1] \longrightarrow \mathbb{C}$, such that $f(x)$ is chosen to be the limit of $\left\{f_{n}(x): n \in \mathbb{N}_{\geq 1}\right\}$ for all $x \in[0,1]$.

It only remains to show that f is continuous on $[0,1]$ (that is, $f \in C[0,1])$ and $d\left(f_{n}, f\right) \rightarrow 0$ as $n \rightarrow \infty$.

We will first prove the following claim.

Claim: For any $\epsilon>0$, there exists $N \in \mathbb{N}_{\geq 1}$, such that for any $n>N$, we have

$$
\sup _{x \in[0,1]}\left|f(x)-f_{n}(x)\right|<\epsilon .
$$

Proof of this claim: As $\left\{f_{n}: n \in \mathbb{N}_{\geq 1}\right\}$ is a Cauchy sequence, for any $\epsilon>0$, there exists $N \in \mathbb{N}_{\geq 1}$, such that for all $n>N, k \in \mathbb{N}$, we have

$$
\sup _{x \in[0,1]}\left|f_{n}(x)-f_{n+k}(x)\right|<\epsilon / 4 .
$$

As $\lim _{k \rightarrow \infty} f_{n+k}(x)=f(x)$ for all $x \in X$, we have that

$$
\left|f_{n}(x)-f(x)\right| \leq \epsilon / 4<\epsilon / 2
$$

for all $x \in X$ and for all $n>N$, which finishes the proof of the claim.

Based on this claim, we can easily finish our proof. In fact, we just need to show that $f \in C[0,1]$, as $d\left(f_{n}, f\right) \rightarrow 0$ then follows directly from our claim.

For any $a \in[0,1]$, we will show that f is continuous at a. In fact, according to the claim, we can find $N \in \mathbb{N}_{\geq 1}$ such that

$$
\sup _{x \in[0,1]}\left|f_{N}(x)-f(x)\right|<\epsilon / 3 .
$$

As f_{N} is continuous, there exists $\delta>0$, such that for any $x \in[0,1]$ with $|x-a|<\delta$, we have

$$
\left|f_{N}(x)-f_{N}(a)\right|<\epsilon / 3
$$

Then we have, for any $x \in[0,1]$ with $|x-a|<\delta$,

$$
\begin{aligned}
|f(x)-f(a)| & \left.=\mid f(x)-f_{n}(x)\right)+f_{n}(x)-f_{n}(a)+f_{n}(a)-f(a) \mid \\
& \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(a)\right|+\left|f_{n}(a)-f(a)\right| \\
& \leq \sup _{x \in[0,1]}\left|f_{N}(x)-f(x)\right|+\left|f_{n}(x)-f_{n}(a)\right|+\sup _{x \in[0,1]}\left|f_{N}(x)-f(x)\right| \\
& \leq \epsilon / 3+\epsilon / 3+\epsilon / 3 \\
& =\epsilon .
\end{aligned}
$$

Thus f is continuous at any $a \in[0,1]$, which finishes the proof.
2. Not so hard to prove. Need the fact that for $\left\{f_{n} \in C[0,1]\right\}_{n \in \mathbb{N} \geq 1}$ and $f \in C[0,1]$, if $\int_{0}^{1}\left|f_{n}(x)-f(x)\right| \mathrm{d} x \rightarrow 0$, then $f_{n}(x) \rightarrow f(x)$ for all $x \in[0,1]$. Note that the proof of this fact is one of the homework problem already assigned to the class.

